据国外媒体报道,有些动物具有控制光线的能力,能使自己变得近乎隐形。
我们都知道鱿鱼和章鱼能利用色素细胞使自己融合到周围环境中,但如果是变得完全隐形呢?为了达到透明的效果,你或许需要使光线穿过身体,或者使周围的光线发生弯折,使其不能反射回观察者的眼中。这是一个很狡猾的技能,但有些动物几乎就做到了。
海洋动物如果想躲藏起来,一般有两种选择。生活在深海或靠近海底的动物往往与沙子或岩石融为一体,或者隐藏在珊瑚中。不过,深海通常是漆黑一片,很多掠食者的眼睛也已经退化,隐形并不是很有必要。
靠近海面生活的动物在躲藏时,会利用生物发光效应展示出令人炫目的色彩效果,使位于下方的掠食者误以为是阳光照射水面时产生的波纹。生活在远洋带海水中层的动物则没有这两种选择,那里也是最多隐形动物生活的地方。
或许最简单的隐形方式就是变得透明,使光线能完全穿过身体。在开阔大洋中,由于缺乏可供躲藏的岩石、裂缝等结构,变得透明就成为非常理想的隐藏方式。事实上,透明是许多完全毫无关联的动物共同的选择,出现过多次独立的演化过程。
玻璃章鱼
透明章鱼是一种大洋性的深海章鱼
玻璃章鱼(学名:Vitreledonella richardi)的得名,便是因为其身体几乎完全透明。这种凝胶状的章鱼能长到45厘米长——如果算上触手的话。它们分布在热带和亚热带海域,在300米到1000米之间的深度活动。除了消化系统、视神经和眼睛可见之外,玻璃章鱼对捕食者几乎完全隐形。
但是,如果眼睛和肠子都能被看到,隐形还有什么意义呢?更糟糕的是,这些器官还会在海底留下影子,使捕食者更容易发现。眼睛需要吸收光线才能发挥作用,因此也不可能是透明的。肠道具有内容物,因此除非动物摄食的是透明的食物,否则肠道也必将暴露。然而,玻璃章鱼,以及其他所有透明生物,在这些不透明器官的伪装上都有各自的方法。玻璃章鱼不像其他章鱼那样具有大大的圆眼睛,而是具有伸长的管状眼睛,虽然损失了周边视觉,但这能最大限度地减小投下的影子,从而更不容易被下方的掠食者发现。还有证据表明,玻璃章鱼的身体朝向也是为了尽可能地减小影子。
玻璃章鱼并不是唯一能伪装眼睛的透明动物。许多透明的软体动物会用镜面结构来伪装眼睛,因为镜面在开阔大洋中更多是反射海水,使眼睛变得隐形。
玻璃鱿鱼
小头乌贼又名小头鱿(学名:Cranchia scabra)
鱿鱼中也有许多透明的成员,主要属于小头乌贼科(Cranchiidae,它们又被称为“玻璃鱿鱼”),大约有60个物种,都几乎可以一眼看透。这些鱿鱼生活在世界各个开阔大洋区域,生活深度为200米到1000米之间。尽管身体完全透明,但它们的大眼睛却不是透明的,在下方游动的掠食者可以很容易发现眼睛投下的影子。不过,玻璃鱿鱼有一种聪明的伪装方式。它们能利用眼睛下方的发光体制造出“发光消影”(counter-illumination)的效果。这有点像阳光经过滤镜后照下来的情况,使鱿鱼能隐藏到背景中,不被下方的掠食者发现。然而,从其他角度看的时候,这些鱿鱼发出的光十分明显——如同海水中吸引掠食者前来的灯塔。
来自宾夕法尼亚大学的研究人员发现,这些鱿鱼的发光体能调节所发出的光线,以抵消其他方向上的光线,从而形成某种全方位隐形的效果。
浮蚕属物种
浮蚕属是多毛纲生物的一个属,是一类几乎完全透明的海洋蠕虫。有趣的是,浮蚕属中至少有11个物种能发出明亮的生物光。大部分浮蚕属物种会发出蓝光,但有一个学名为Tomopteris nisseni的物种却能发出黄色光,是为数不多的能发出黄色光的海洋生物之一。
一些浮蚕属物种还能通过发光部位——称为疣足(parapodia)——的脱落来分散捕食者的注意力,使捕食者追逐这些脱落部位,而不再注意蠕虫本身。
樽海鞘
浮游生活的太平浮蚕(Tomopteris pacifica)
樽海鞘是几乎完全透明的桶状生物,其身体呈凝胶状,通过吸入和排出海水,它们能够同时游动和摄食。樽海鞘依靠滤食海水中的浮游植物为生。尽管看起来有点像水母,但它们其实更为复杂,并且与鱼类和脊椎动物关系更加密切。它们还具有心脏和鳃,能进行有性繁殖。
樽海鞘有着令人称奇的生命周期。在经过一段单独生存的时期之后,它们会聚集成群,形成长链状(或其他形状)的群落。单个樽海鞘还会通过电信号与其他同类进行交流,实现行动的同步性。
端足类?亚目
宽肌纽鳃樽(Iasis zonaria)
有时候,身体透明还不够,生物体需要其他方法来使自己保持隐形。端足类?亚目的物种就演化出了另一种有效的方法。这类微小的甲壳类动物身体透明,外形与虾很类似。不过,即使是一块透明的玻璃,你也可以根据上面反射的光亮来发现它的存在。在海洋中这是一个不容忽视的问题,因为许多掠食者会利用生物发光来搜寻猎物。
近期一项研究显示,?亚目的隐藏能力不仅仅是简单地使身体透明,它们还能利用某种纳米技术来干涉光线,甚至使光线弯曲,从而使自身变得几乎完全隐形。科学家用扫描电子显微镜分析了7个?亚目物种,发现其中一个物种的腿上覆盖着纳米级的毛发状突起结构;而在这7个物种的身体上,则都具有纳米级的突起或球形结构,大小在100纳米到300纳米左右。这些微小的突起能使光线尽可能地分散。科学家发现,两种纳米结构——突起和毛发状结构——都能使反射率降低多达100倍。更加奇特的是,科学家认为这些突起或球形结构很可能是细菌。
Japetella heathi和班氏爪鱿
Japetella heathi是一种深海章鱼,和班氏爪鱿(学名:Onychoteuthis banksii)一样都具有神奇的变色能力——能迅速从透明转变成红褐色。这两个物种都生活在太平洋600米至1000米的深度,即中层带(mesopelagic zone)中。
尽管身体透明能带来很多好处,但在靠近水面的地方,如果你把光线直接照向透明物体,这些物体就会突然间变得很明显。这种情况在深海中也经常发生,掠食者会利用发光器官作为“探照灯”,寻找各种猎物。在这些深度的猎物通常呈红色或黑色,以尽可能地减少蓝光的反射。深海章鱼Japetella heathi和班氏爪鱿能同时做到这两点,它们的皮肤上都具有对光敏感的色素细胞,当探测到光线时,这些色素细胞就会膨胀并释放出色素。
“海洋蓝宝石”
叶水蚤最不可思议的一点是,前一秒它们还亮闪闪的,而下一秒就突然消失不见。
叶水蚤(Sapphirina)是一类体型跟蚂蚁差不多的生物,又被称为“海洋蓝宝石”
叶水蚤(Sapphirina)是一类体型跟蚂蚁差不多的生物,生活在温暖的热带和亚热带海域。它们属于一类被称为桡足类(copepod)的甲壳动物。不同的叶水蚤物种能发出奇特的,从亮蓝色、亮红色到金色的荧光。
叶水蚤最不可思议的一点是,前一秒它们还亮闪闪的,而下一秒就会突然消失。它们的表皮细胞具有微小的晶体片,以六边形的蜂巢图案排列。在细胞溶质中,这些含有鸟嘌呤——组成脱氧核糖核酸(DNA)的4种基本碱基之一——的晶体分层排列。
研究人员发现,尽管鸟嘌呤晶体层通常都具有相同的厚度——70纳米,但各层之间的溶质厚度并不相同,从50纳米到200纳米不等。正是这种差异导致了叶水蚤体色的变化。溶质层更厚,其反射的光线波长就更长,使叶水蚤呈现出红色或红紫色。
叶水蚤的体色也取决于光线照射的角度。随着角度变得越来越小,反射光线的波长就变得越来越短,叶水蚤的体色就越来越接近紫色。如果光线角度变得足够小,反射光位于紫外线范围内,我们就无法看到叶水蚤,于是它们就消失了。研究人员发现,当光线以45度照射到这些甲壳动物身上时,它们就能成功隐形。
|